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Abstract 

Wind turbines undergo dynamic loads along all the phases of transformation of wind kinetic 

energy into power output to be fed into the grid. Gearbox breakdowns are one of the most common 

and most severe causes of energy losses and it is therefore crucial to prevent and forecast them. 

Straightforward vibration analysis is very demanding by the point of view of technology, costs and 

complexity of signal denoising. A considerable keystone in fault diagnosis is the analysis of 

Supervisory Control And Data Acquisition (SCADA) systems. In particular, thermal behaviour of 

wind turbines fits well with the common time scale of SCADA data; heating trends are fairly 

responsive as a consequence of rotor vibration. Machine learning techniques applied to SCADA 

data are very powerful in reconstructing inputs – output dependency. On these grounds, in this 

work an Artificial Neural Network approach is proposed for early diagnosis of gearbox faults. The 

method is validated on the data of a wind farm operating in Italy. It is shown that the method is 

capable in recognizing incoming faults with a very manageable advance also with data on short 

time scales. 
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INTRODUCTION  

 

Renewable energy sources are becoming more 

and more widespread everyday and we are looking 

out at the era in which their use will not be fiscally 

stimulated. To achieve that goal, the renewable 

sector must in perspective fight in competitiveness 

against fossil sources. For this reason, the 

optimization of source exploitation and technology 

is crucial. In the renewable sector, wind energy 

stands apart, due to the nature of the source: it is 

very variable in space and time and it is even 

challenging to predict the amount of energy that will 

be dispatched into the grid on a daily basis [1, 2, 3]. 

As regards technology, wind turbines are 

affected by dynamic loads along all the phases of 

transformation of wind kinetic energy into power 

output. For this reason, one of the most severe and 

most common causes of wind turbine breakdowns is 

gearbox fault. In [4, 5], it is estimated that a 

judicious prevention (Condition Monitoring through 

gearbox vibration analysis) would cost around the 

20% of what a sudden breakdown costs in terms of 

energy loss and it is shown that the common rate of 

gearbox breakdowns justifies the need of condition 

monitoring techniques for fault prevention. 

Condition monitoring of gearbox means 

collecting at meaningful points and analysing 

vibrations of the shaft that transforms the slow 

rotation of the rotor into fast rotation. There is a vast 

literature on these issues. We refer to [6–10] for an 

overview. The main point about vibration analysis is 

that it is demanding, by the point of view of 

technology, of cost and of complexity of signal, 

which needs to be denoised for extracting diagnostic 

information. In [11], for example, it is shown that 

feature extraction from gearbox vibration signals can 

be really challenging. The anomalous spectra 

detected can also be due to unsteady conditions 

generated by wake interactions [12-20] between 

nearby turbines and this or similar aspects 

complicate the scenario. 

Supervisory Control And Data Acquisition 

(SCADA) systems have become ubiquitous in 

modern wind turbine technology because they have 

an adequate cost, because they are reasonably simple 

to be interpreted and because they are versatile. 

SCADA data are vastly employed for performance 
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monitoring [21-28], and their exploitation for 

condition monitoring has been expanding recently. 

SCADA analysis is considered a late stage of fault 

diagnosis, if compared with spectral vibration 

analysis. However the boost in machine learning 

tools and artificial intelligence approach is leading to 

an improvement in the diagnostic power. Using 

SCADA data, it is in perspective possible to make 

gearbox fault diagnosis with manageable advance. 

One of the main sources of information for SCADA-

based condition monitoring are temperatures: 

actually, the heating behaviour of wind turbines is a 

“slow” and persisting phenomenon, if compared to 

vibrations. The time granularity of the data (usually 

10 minutes) of SCADA fits well with it and thermal 

phenomena are fairly responsive to the motion of the 

shaft. Of course the main issue is being capable of 

fault diagnosis sufficiently early for intervention. 

For these reasons, there is a vast literature about the 

use of SCADA temperature data for fault diagnosis: 

in [29], oil temperature rises are employed for 

detection of incoming faults. Processing data from 

24 turbines, in [30] bearing faults are predicted, with 

a 97% accuracy but only 1.5 hours before they 

occur. This time scale is a typical example of the 

issue above cited: it does not fit for intervention; for 

this reason, the objective is pushing forward the 

techniques. Machine learning techniques are very 

appropriate for this objective: the capability in 

recognizing non-trivial dependency between the 

inputs and the outputs is crucial. Several Artificial 

Neural Network (ANN) models have been proposed 

and fault onset is recognized as anomalous mismatch 

between predicted and actual heating behaviour. 

This is the case of References [31-34].  

This work moves from the grounds of [35]: in 

[35], it was shown that an intuitive method for 

temperature data analysis is powerful in diagnosing 

faults. The main shortcoming about it is that it 

requires a considerable statistical basis. In this work, 

inspired by the debate in the literature, we propose 

an ANN model for processing temperature data and 

identifying fault onsets. The added value, as will be 

discussed later on, is that, once the model is trained, 

the validation can successfully be conducted also on 

time scales much shorter than the ones in [35]. This 

improves the advance of fault detection. It is 

important to highlight that the training has to be 

performed on an appropriate data set by the point of 

view of both quantity and quality. Another key point 

of this work is that the validation is conducted on a 

real test case, a wind farm sited in Italy. The 

structure of the work is therefore as follows: in 

Section 1, the wind farm, the data set and the 

methods are described. Section 2 is devoted to the 

results and finally in Section 3 some conclusions are 

provided, as well as some further directions. 

 

1. THE METHOD AND THE VALIDATION 

CASE 

 
The validation case of this work is a wind farm 

sited in southern Italy. It is composed of 7 turbines 

having 2 MW of rated power each. This validation 

case has been selected because it provides several 

added values for the scientific purposes of this work. 

Vast SCADA data sets are at disposal of the authors 

and, most of all, 3 turbines have undergone gearbox 

problems which have actually been prevented in 

time using the combination of the approach of [35] 

and of the method of this work. The turbines 

undergoing gearbox problems are named as T1, T2 

and T6. 

The method of [35] is used in this work as 

support to the reliability of the approach proposed 

here, and therefore it is briefly recalled: in [35], it is 

proposed to monitor wind turbine temperatures 

through a plot against the percentage of power with 

respect to the rated. In [35], the data are averaged on 

percentage power intervals having as amplitude the 

10%. This method is mainly qualitative because it is 

not automatic, nevertheless it provides some useful 

indication for diagnosing faults by comparing the 

behaviour of the turbines the one against the others. 

This is the conclusion of [35]. 

In this work, as hinted in the Introduction, an 

ANN-based approach is proposed. In the latest 

years, impressive achievements have been reached 

about the use of data-driven Artificial Intelligence 

approaches for wind turbine fault diagnosis. In [36, 

37], for example, Adaptive Neuro-Fuzzy 

Interference Systems (ANFIS) are employed. In 

[38], Self Organizing Map (SOM) method is 

adopted. In [34], an up to date review of the several 

possible methods for normal behaviour modelling 

and anomaly detection is provided. This work moves 

from the grounds of [31] and [39]. For example in 

[39], an Intelligent System for Predictive 

Maintenance (SIMAP), designed for real time 

monitoring, is described. The approaches of [31] and 

[39] are ANN-based and one of the inspiring ideas 

of this work is addressing if the models of [31] and 

[39] can be simplified even further but keeping a 

good diagnostic power, in order to reduce the 

computational time. As shall be shown later on, this 

is indeed the case. This also motivates why the 

authors reduced to a two-dimensional problem: the 

selection of the very minimum number of inputs is 

inspired by the discussion in [31].   

Therefore, the set up of the ANN is the 

following: the output is an internal temperature 

signal of the wind turbine, the inputs are turbine 

active power and external temperature. The main 

difference with respect to the models in [31] and 

[39] is that the model is not trained with the output 

itself at previous time steps. This constitutes a 

remarkable difference, because training the ANN 

with the output can dope the method and dilute the 

diagnostic power. 
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A feed-forward ANN with 10 neurons is trained 

for each turbine, using this model, feeding with data 

sets describing each turbine under correct behaviour 

(this is further crosschecked using the plot of [35]). 

A sketch of the model is proposed in Figure 1. The 

feed-forward architecture is employed because it is 

very common for facing the problem of 

reconstructing the dependency between inputs and 

output [34]. 

The dimension of the ANN’s inner layer was 

chosen after some tests between 5 to 30: the best 

setup for the solution of the problem presented to the 

ANN has been selected. It was decided not to test 

more complex setup with more inner layers or more 

neurons in the inner layer to avoid overfitting and to 

keep the approach as simple as possible. 

The structure is chosen to have tangent transfer 

function in the inner layer and linear in the output 

layer. The feed forward-back propagation training is 

run with Levenberg-Marquardt algorithm, as is well 

suited for small and medium scale problems, with 
weight decay constant set at 0.001. 

The stopping criterion is defined as negligible 

change in the performance, that is set as the lowest 

mean squared error on part of the data provided. 

At this purpose, a random division of the data 

provided is done, in order to split between those 

employed for training and for performance 

calculation.  

 

 

 
 

Fig. 1. The structure of the ANN model. 

 

 

The internal temperature signal, selected as 

output, should be as responsive as possible to the 

selected inputs, in particular to the collective motion 

of the shaft resembling in the amount of power 

output produced: this is the reason why the main 

bearing temperature has been selected as output to 

study. Further, a key point of the approach is that 

inputs are only external variables. In the literature 

about internal temperature analysis for fault 

diagnosis, it is common to train models using the 

history of the temperature itself. Doing this, the 

cross correlation between what happens now and 

what will happen soon might dominate and the 

method might lose the capability of recognizing 

incoming faults as displacement between synthetized 

and observed values. 

The training data set is composed by 15866 

records, collected over 7 months, filtered on the 

regime of the whole wind farm being in productive 

phase and no anomalous events. In Figure 2, the 

training data set is plotted for the sample turbine T4, 

the colours refer to inner temperature values. The 

power output is normalized with respect to the rated. 

After the training, the ANN for turbine T4 is 

employed for simulating data on a regular grid 

having the same intervals as the training data set. 

This is done in order to compare the “real” surface 

of Figure 2 against a recognized surface which is 

learnt in the training from the real data. The surface 

is plotted in Figure 3 and it arises that the ANN 

indeed captures very well the dependency of the 

internal temperature on external temperature and 

active power.  

 

 
Fig. 2. The training data set for turbine T4. 

 

 

 
Fig. 3. The simulated data set for turbine T4, after the 

training of the ANN. 

 

Therefore, as Figures 2 and 3 support, one 

important point of the method is that the ANN stores 

the standard wind turbine functioning as regards the 

relationship between the inputs and output defined, 

learning from the provided data set. 

The validation highlights malfunctioning 

behaviour of some turbines when the ANN output is 

far from the observed internal temperature.  
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So, the validation can reliably be conducted also 

on reasonably short time scales. In the following 

Section 2, the results are collected. 

2. RESULTS 

 

In Figure 4, the main bearing vs active power 

average plot is shown, according to the method of 

[35]. The data set is the one used for training. A 

very limited spread arises between the behaviours 

of the wind turbines (less than 10 °C, over all the 

power spectrum): for this reason, the qualitative 

method of [35] supports the confidence that training 

data sets has a good quality, in the sense that it 

describes all the wind farm under not anomalous 

functioning. A peculiarity of the plot in Figure 4 is 

that the plot shows a plateau, if not even a descent, 

approaching rated power. This is reasonable by a 

mechanical point of view because heating is 

expected to be more evident with variation of 

rotational speed and at rated power rotational speed 

is kept constant. Further, rated power is associated 

to a vast interval of wind intensities and one can 

have the same power but very different flow, and 

therefore air transfer and therefore lower 

temperature. Further, the behaviour of those lines 

and of the surface as in Figure 2 is turbine-

dependent and, as one ANN is trained per each 

turbine, this behaviour is part of the information 

stored in the training.  

 
Fig. 4. Main bearing temperature vs Power, during the 

training period. Bins have amplitude of the 10% of the 

rated power 

 
Three validation periods are selected, which are 

not part of the training period: three months made 

of 7958 records (P1), one month made of 2804 

record (P2) and few days made of 534 records (P3). 

The metrics for evaluating the degree of agreement 

between simulations and actual measurements are 

the R2 and the mean absolute error (MAE). Due to 

the non-deterministic nature of ANNs, several runs 

have been launched for each validation period. The 

result is that the variation of the validation metrics, 

from one trial to the other, is negligible. The values 

reported in the bar plot of Figures 5, 6, 9, 10, 11 and 

12 are the averages on the set of launches for each 

period and, for brevity, the standard deviation is not 

reported explicitly because it is negligible. In 

Figures 5 and 6, the metrics for the validation 

period P1 are reported.  

 

 
Fig. 5. Validation metric for P1 data set. R2. 

 
Fig. 6. Validation metric for P1 data set. MAE. 

 

In Figures 7 and 8, the time series of simulated 

and actual measurements on the P1 data series are 

plotted. The data are normalized to the maximum 

value during the training phase. Figure 7 refers to 

turbine T2, the one showing highest mismatch 

between simulation and reality. Figure 8 refers to 

turbine T4 and highlights that the model is capable 

in locally reproducing temperature fluctuations on 

their proper time scale, when a turbine is 

functioning normally. Instead, when the turbine 

undergoes gearbox anomalous functioning, this 

agreement breaks down (Figure 7). 

 

 
Fig. 7. Time series of simulated and measured data. 

Turbine T2, P1 validation data set. 
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Fig. 8. Time series of simulated and measured data. 

Turbine T4, P1 validation data set. 

 
In Figures 9 and 10, the validation metrics for the 

P2 data set are shown, and in Figures 11 and 12 for 

the P3 data set. From Figures 5, 6, 9, 10, 11 and 12 it 

arises that, as expected, R2 is a more accurate 

indicator for highlighting anomalies and it shows 

better the anomalous events if calculated on a 

shorter period. If one wants to automate the 

detection, a possible route is the following: compute 

the average and standard deviation of the indicators 

for all the wind turbines except the suspect of 

anomalies (which are T1, T2 and T6) and then 

compute how many standard deviations separate the 

indicators for the suspects from the above computed 

average, suspects excluded. A reasonable threshold 

for highlighting an anomaly is 5 standard deviations: 

applying this method, T1, T2 and T6 are isolated as 

anomalous by using the R2, but not using MAE. 

Nevertheless, the MAE is also useful for a bird’s eye 

view and that is why it is reported also. 

Notice that the results are very clear and valuable 

also in the case of the P3 data set, for which (due to 

its size) the method of [35] would not give reliable 

responses. 

 
Fig. 9. Validation metric for P2 data set. R2. 

 

 
Fig. 10. Validation metric for P2 data set. MAE. 

 
Fig. 11. Validation metric for P3 data set. R2. 

 
Fig. 12. Validation metric for P3 data set. MAE. 

 

3. CONCLUSION AND FURTHER 

DIRECTIONS 

 
This work has been devoted to a very fertile field 

in wind energy technology: early diagnosis of 

gearbox faults. This work moves from a very 

stimulating debate in the scientific literature, about 

the use of SCADA data for condition monitoring of 

wind turbines. The direct source of information 

about the motion of the main shaft is vibration of the 

main shaft itself. The vibration high quality data are 

very demanding by the point of view of cost, 

technology and complexity of denoising and 

interpretation. SCADA data are therefore widely 

employed for condition monitoring, although they 

are not direct data sets. In some cases, as for 

example temperatures, the much coarser time grain 

of SCADA naturally “denoises” and fits well for 

describing the heating consequences of the motion 

of the main shaft. This work moves from [35], where 

a versatile and intuitive SCADA-based approach for 
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fault diagnosis was proposed. The shortcoming of 

that method was that it required considerably vast 

data sets for statistical treatment: actually, a 

reasonable rule of thumb is employing the method of 

[35] on a monthly basis, but this can be too 

demanding for the purpose of early fault detection. 

And, further, using Artificial Intelligence 

techniques, one can aim at automating the detection 

of anomalies (as is suggested in the Results section 

above) and this is difficult to achieve using the 

method of [35]. The idea of this work, therefore, was 

exploiting machine learning for establishing a 

reasonable model of shaft temperatures. 

Subsequently, if the model works well, it can be 

used also on very short time scales and incoming 

faults should be highlighted as anomalous 

mismatches between simulation and reality. This has 

proven to be the case. The selected temperature 

signal was main bearing temperature, because it is 

responsive on the selected input variables: active 

power and external temperature. The validation has 

been conducted on the test case of a wind farm sited 

in Italy, featuring 7 turbines with 2MW of rated 

power each. It has been shown, on multiple time 

scales (down to the order of few days, which means 

in our peculiar case 534 measurements), that the 

proposed method highlights fault onsets in 

reasonable advance for 3 (T1, T2 and T6) out of the 

7 turbines. A lesson coming from our validation case 

is that the simple model proposed is indeed very 

responsive. This inspires the idea that only external 

variables should be fed as inputs and it should be 

avoided to feed the model with the history of the 

output itself, because it would “dope” the model. 

Since this operation is very common in ANN-based 

anomaly detection and it is performed also in [31] 

and [39], one of the further directions could be 

comparing the performances of the model of this 

work against the models of [31] and [39]. 

Preliminary results about this point indeed support 

the plausibility of the above assertion about the 

effect of using the output at previous time steps as 

inputs.  

Several are the possible further directions of the 

present work: as regards SCADA-based condition 

monitoring, it would be interesting to analyze 

pressures at relevant points of the wind turbine, as 

for example gear pump or inlets. By the point of 

view of temperatures, an interesting scientific 

development would be a “temperature to gear” 

approach. Moving from the spectral analysis of [11], 

it would be preciously insightful to try to connect 

unsteady load and fatigue conditions [40, 41] under 

complex flow to vibrations and to heating behavior.  
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